Adverse Health Effects of Mobile Phone Masts and Planning Policy

These notes summarise factors on the adverse health effects of radiation from mobile phone masts, and their implications for planning policy.

Four aspects:
(1) Evidence of adverse health effects, human and wildlife [page 1]
(2) Guidelines for different sensitivities and different durations [page 3]
(4) Practical health issues in the siting of masts [page 6]

Notes and references [page 8]

1. Evidence of adverse health effects: human and wildlife

(a) Adverse health effects: humans

- **Harmful radiation**: electromagnetic (EM) radiation from mobile phone, TV, radio and TETRA masts and similar antennas causes adverse health effects, according to studies since 1996.
- **80% of these studies** found adverse health effects arising from the radiation from mobile phone masts, according to a review [Notes §1: Khurana et al, 2010].
- **Distance**: most surveys find measurable aspects of adverse health within a distance of about 500 metres.
- **Dose-response pattern**: adverse health effects occur in a dose-response pattern, with people living and working closer to the mast having greater adverse health effects.
- **Neurological effects** often include: headaches, fuzzy thinking, memory lapses.
- **DNA damage**: especially significant in females, within 300m of masts, cumulative with mobile phone usage.
- **Cancer risks are increased** by up to five times after about five years’ residence within 500 metres.
- **Cancer risk classification**: The radiation from mobile phone masts was classified as a 2B possible human carcinogen by the World Health Organization’s IARC in 2011. Many leading experts now state, in peer-reviewed studies, that new evidence after 2011 requires that radio frequency radiation is raised from a 2B cancer classification to 2A probable or 1 certain human carcinogen. See below for some of these studies. [Notes §2]
 The reason this has not yet happened is that the World Health Organization (WHO) and the ICNIRP have many conflicts of interest, as explained by Professor L. Hardell, one of the world’s leading experts in this field (“The WHO, RF radiation and health - a hard nut to crack,” 2017). [Notes §3]
- **Other physiological problems from this radiation**: heart problems, skin effects, respiratory problems, diabetic effects, digestive problems, muscular problems, sinus problems, food and other allergies, etc..
• **Genetic sensitivity to EM energy:** Many of these established adverse health outcomes also relate to specific sensitivity symptoms to this type of radiation, including those who suffer from electromagnetic hyper-sensitivity (EHS). Such people often have specific genetic variations which predispose them to being especially sensitive to this radiation. Some of these genetic haplotypes are in common with those for cancer initiation. Such people may be unable to continue residing or working in proximity to a mast.

• **Implants:** Some people with passive metallic implants can be affected adversely by radiation as from masts. See below, part 4.

• **Studies:** Over 40 studies showing ill health from masts and mobile phone radiation, including cancers and neurological effects, are listed at the end of this paper. [Notes §4]

(b) **Adverse health effects: plants and wildlife**

• **Harmful radiation:** many studies show that radiation from mobile phone masts has an adverse effect on plants and wildlife.

• **Adverse effects:** destruction of trees, disorientation and some forms of colony collapse in bees, insect and bat reduction, bird reproduction reduced or eliminated, bird migration disorientated, etc..

• **Masts should be banned,** according to leading experts in this field of bioelectromagnetics, to save (i) trees and (ii) birds across the planet.
 (i) Because trees are always stationary in relation to mast radiation, they suffer more cumulative damage than moving wildlife which is not always exposed in the same place and at the same angle.
 (ii) Species of birds which rely on migration for breeding may become extinct, if they cannot maintain migratory routes because of the blocking effect of mast radiation on their ability to navigate using the Earth’s magnetic field.

• **Studies:** Over 30 studies showing adverse effects on plants and wildlife are listed at the end of this paper. [Notes §5]
2. Guidelines: for different sensitivities and different durations

(a) People sensitive to electromagnetic energy need low limits (ICNIRP 2002)

- The ICNIRP (2002) warns that people sensitive to EM energy need non-thermal limits below the ICNIRP 1998 Guidelines with their 6-minute heating limits, which are the present limits used by the UK government under NPPF (2012). [Notes §6]
- The UK government says that it follows the ICNIRP.
- Guidelines, which are biological and long-term and thus suitable for sensitive people, include:
 - Bioinitiative 2012
 - Building Biology 2008
 - EUROPAEM 2016
 - Seletun 2010 [Notes §7]

(b) Long-term biological guidelines and for sensitive people (e.g. Bioinitiative, Building Biology, EUROPAEM 2016, Seletun)

- **Long-term limits**: Bioinitiative 2012 (protective for 62 of 67 studies), Building Biology 2008, EUROPAEM EMF Guidelines 2016, and Seletun 2010 are designed for non-thermal long-term exposure, as from masts, unlike ICNIRP 6-minute heating limits.
- **Duration**: the EUROPAEM 2016 limits are calculated for 24-hour exposures, not 6 minutes, but some incorporate up to 4 hours per 24 hours at higher levels of exposure. Such higher exposures may not apply to people who are hyper-sensitive, who need low levels at all times. All people, whether consciously sensitive or not, are affected by cumulative radiation exposures.
- **Sleeping areas**: most experts now regard low levels of radiation in the sleeping area as crucial for allowing the body to recover at night, so any exposure near residential accommodation should comply with these limits.
- **Co-exposures**: people with hyper-sensitivity to EM energy are, in 80% of cases, also hyper-sensitive to chemical pollution, including the effects of airborne pesticides and pesticides on plants and in foods.
- **Sensitive people**: include children, the elderly, the ill, pregnant women, and people who are sensitive or hyper-sensitive to electromagnetic radiation, estimated by the WHO to be about 3% of the general population. Recent studies indicate that about 40% of adults are subconsciously sensitive to this radiation, since it has adverse cellular effects which affect their chronic immune conditions. [Notes §7]

(c) Short-term 6-minute heating guidelines (ICNIRP 1998)

- **The ICNIRP 1998 Guidelines**: these guidelines are still used by the UK government both for short-term exposures, as from mobile phones calls, and for long-term exposures, as from radiation zones around mobile phone masts. This means that the UK effectively has no appropriate safety guidelines for long-term exposure and health effects from masts.
• **Heating only limits:** these ICNIRP 1998 guidelines are only for preventing the heating of the body by more than one degree averaged over 6 minutes. They are therefore not relevant to long-term non-thermal exposures, such as working or living near a mast. ICNIRP states that “These guidelines are based on short-term, immediate health effects such as stimulation of peripheral nerves and muscles, shocks and burns ... and elevated tissue temperatures resulting from absorption of energy during exposure to EMF” and they do not protect against “potential long-term effects of exposure, such as an increased risk of cancer”.

• **Mistaken thermal hypothesis:** in 1953 Schwan in the USA claimed, mistakenly, that the only adverse effect of radio and microwave exposure is heating. In contrast, in 1958 the USSR correctly recognised established non-thermal effects. The majority of involved scientists now regard ICNIRP’s heating of one degree in six minutes as irrelevant, since exercise can easily induce a bodily temperature rise of one degree within six minutes, yet this does not trigger the established neurological and cancer effects caused by radiation such as from masts and mobile phones. Experts now consider that more accurate ways of setting safety limits for the health damage caused by phone mast radiation are DNA breaks and other markers of harmful oxidative stress. These are the basis of biological limits.

• **Natural levels and problems of pulse and modulation:** the natural or ‘green’ environmental levels relevant to this type of radiation are about 3 to 10 million times below man-made levels of radiation allowed by ICNIRP limits. In addition, natural radiation is not artificially pulsed or modulated, and these two factors are known to exacerbate the adverse health effects of mobile phone radiation.

• **DNA effects:** mobile phone mast radiation has been shown to induce DNA changes which affect fertility, in addition to established neurological and cancer effects. DNA changes thus have teratogenic effects and some studies show extinction of species within five generations at high levels of man-made radiation.

[Notes §8]

Long-Term and Short-Term Safety Limits

<table>
<thead>
<tr>
<th>Type</th>
<th>Group</th>
<th>Frequency</th>
<th>DAY TIME (V/m)</th>
<th>NIGHT TIME (V/m)</th>
<th>SENSITIVE (µW/m²)</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural level</td>
<td>RF</td>
<td></td>
<td>0.00002 V/m (0.000001 uW/m²)</td>
<td></td>
<td></td>
<td>24/24</td>
</tr>
<tr>
<td>Long-term, biological</td>
<td>Bioinitiative 2012</td>
<td>RF</td>
<td>0.04 V/m (6 µW/m²)</td>
<td>0.03 V/m (3 µW/m²)</td>
<td></td>
<td>24/24</td>
</tr>
<tr>
<td></td>
<td>Building Biology 2008 (Slight Concern)</td>
<td>RF</td>
<td>0.06 V/m (10 µW/m²)</td>
<td>0.006 V/m (0.1 µW/m²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUROPAEM 2016</td>
<td>Wifi G2.5</td>
<td>0.06 V/m (10 µW/m²)</td>
<td>0.019 V/m (1 µW/m²)</td>
<td>0.006 V/m (0.1 µW/m²)</td>
<td>20/24</td>
</tr>
<tr>
<td></td>
<td>Mobile phone G2.G3.G4</td>
<td></td>
<td>0.19 V/m (100 µW/m²)</td>
<td>0.06 V/m (10 µW/m²)</td>
<td>0.019 V/m (1 µW/m²)</td>
<td>20/24</td>
</tr>
<tr>
<td></td>
<td>Seletun 2010</td>
<td>RF</td>
<td></td>
<td></td>
<td>0.25 V/m (170 µW/m²)</td>
<td>24/24</td>
</tr>
<tr>
<td></td>
<td>Long-term Danger Level</td>
<td>RF</td>
<td>above 0.04-0.25 V/m (6-170 µW/m²)</td>
<td></td>
<td></td>
<td>24/24</td>
</tr>
<tr>
<td>Short-term, heating</td>
<td>ICNIRP 1998</td>
<td>RF</td>
<td>up to 62.0 V/m (10,000,000 µW/m²)</td>
<td></td>
<td></td>
<td>24/24</td>
</tr>
</tbody>
</table>

- **Planners have two mutually irreconcilable responsibilities** under the NPPF:

 (a) “ensure and support health” within the area for which the planners are responsible, and as a result of any individual planning decision,

 (b) “not seek” to "ensure and support health" if a proposed mast complies with the 6-minute heating limits set by the ICNIRP.

- **Individual planners and regulators are being held personally liable,** in increasing numbers of legal cases around the world, where they allow radiation at levels known to cause long-term adverse health effects although compliant with ICNIRP’s short-term heating limits, but where they do not also take additional action to ensure and support the health of nearby residents. Such action might include protecting residents from the established long-term effects by shielding individual properties, medical monitoring and other mitigation of the EM pollution.

 (a) Planning requirement to ensure and support health (NPPF)

- The UK Sustainable Development Strategy Securing the Future sets out five 'guiding principles' of sustainable development: ... ensuring a strong, healthy and just society: “There are three dimensions to sustainable development: economic, social and environmental ... a social role – supporting strong, vibrant and healthy communities, ... by creating a high quality built environment, with accessible local services that reflect the community’s needs and support its health, social and cultural well-being” (NPPF, Paragraph 7: Achieving Sustainable Development, p.2)

- “take account of and support local strategies to improve health, social and cultural wellbeing for all” (NPPF, Paragraph 17: Core planning principles, p.6)

- “To prevent unacceptable risks from pollution ... decisions should ensure that new development is appropriate for its location. The effects (including cumulative effects) of pollution on health, the natural environment or general amenity, and the potential sensitivity of the area or proposed development to adverse effects from pollution, should be taken into account” (NPPF, Paragraph 120, p.28)

 (b) Planning requirement not to seek to ensure or support health (NPPF)

- “Local planning authorities ... should not seek to ... determine health safeguards if the proposal meets International Commission guidelines for public exposure” (NPPF, Paragraph 46: Supporting high quality communications infrastructure, p.12)

[Notes §9]
4. Practical health issues in the siting of masts

NPPF paragraphs 7, 17 and 141 give planners a responsibility to ensure and support the health of local residents. Planners can help to fulfil this responsibility in part by reference to careful siting and design of masts. Some examples of factors for consideration are given below.

- **NB:** Many hand-held meters and detectors are available to check compliance with biological limits for mobile phone mast and similar radiation, typically for the range 0.01 V/m (0.3 µW/m²) to 3.0 V/m (24,000 µW/m²). [Notes §10]

 (a) **Distance:** a minimum distance of 500m from a mast should reduce the risk of cancers and adverse neurological effects for nearby residents.

 (b) **Sleeping, living and working accommodation:** it is especially important to ensure the appropriate distance from sleeping, living and working accommodation, according to the best health advice.

 (c) **Areas with sensitive populations:** the location of masts should avoid proximity to areas with especially sensitive populations, such as children, pregnant women, the elderly, people who are ill, and people with EHS. Such locations therefore include hospitals, schools, nurseries, nursing homes, old-people’s homes, residential housing, playgrounds, etc.

 (d) **Density of masts and antennas:** it is essential to avoid high densities of masts and antennas, which thus create much higher levels of radiation, especially near

 (i) town and urban areas, where multiple masts and multiple wifi systems create high levels of electrosmog, with all their known health effects, especially when combined with domestic and personal sources of radiation,

 (ii) transport routes, where driver fatigue, lack of concentration and disorientation can have adverse effects,

 (e) **Cumulative effects:** there are higher risks where mast radiation is present in proximity to fixed transmitters, such as wireless smart meters and Wifi installations. It is helpful if councils or other authorities check compliance with biological limits, such as EUROPAEM 2016, in these situations.

 (f) **Radiation patterns:** care is needed in siting masts so that radiation is not unduly concentrated in areas just over, or around, fixed features or obstacles, such as large buildings and steep hills. Alternatively, careful location of masts can use topographical features, like road or railway embankments, to help protect residential housing beyond these features from the full strength of the radiation.

 (g) ‘Green’ or ‘White’ zones free of man-made radiation: areas free of man-made radiation were recommended by the Council of Europe in 2011 to help enable people sensitive to this type of radiation to live full lives within communities: “special measures to protect them, including the creation of wave-free areas not covered by the wireless network”.

 [Notes §11]
(h) **Active implants, such as pacemakers:** these should not be a problem if they are designed by manufacturers to withstand most likely locations with current levels of environmental EM radiation. Combined exposures or new technologies, however, like 5G antennas on lamp-posts outside bedrooms, may present challenges until systems are adapted.

(i) **Passive metallic implants**, including mercury in dental amalgam restorations, can be problematic (i) in inducing internal electric currents, which can cause suffering in people who are highly sensitive, and (ii), in the case of mercury amalgams, in releasing mercury within the body, as well as inducing currents. Many countries have long phased out mercury for dental restorations.

(j) **Weather conditions:** in areas with high rainfall and misty conditions, mobile phones masts more often switch to higher levels of radiation to overcome the attenuation of their signals caused by the water droplets in the atmosphere. This usually means that within the arc of a single cell, any area not directly in the rainstorm suffers significantly higher levels of radiation. Planners need, therefore, to allow for this in ensuring the distance necessary from residential accommodation to help safeguard residents’ health.

(k) **Long-term solutions:** when NPPF paragraph 46 is changed or when the ICNIRP changes to long-term limits, planners will be able to act in accordance with their responsibility for health. Fibre optic cables can deliver high-speed internet access to each home and work-place.
NOTES AND REFERENCES

1. Review of studies, with 80% of studies showing ill health from masts:

2. Studies showing sufficient evidence for phone mast radiation to be reclassified, from the existing Class 2B Possible, to Class 2A Probable, or to Class 1 Certain, Human Carcinogen:

3. World Health Organization/ICNIRP in confusion and conflict of interests over wireless radiation:

4. Studies showing human ill health near masts:
• Parsaei H et al.: "A Multilayer Perceptron Neural Network-Based Model for Predicting Subjective Health Symptoms in People Living in the Vicinity of Mobile Phone Base Stations" Ecopsychology. (2017) link: pdf.

Reports on wildlife damage from masts:
- Helmut Breunig: "Tree damage caused by mobile phone base stations: An observation guide" (Competence Initiative for the Protection of Humanity, the Environment and Democracy e.V., 2017, 29 pages)
- Diana Kordas: "Birds and Trees of Northern Greece: Changes since the Advent of 4G Wireless" (2017; 45 pages)

6. ICNIRP’s warning that sensitive people need limits below 1998 ICNIRP heating limits:

7. Long-term biological guidelines:
- Bionitiative Report 2012:
 http://www.bionitiative.org/
- Building Biology 2008 (Sleeping areas):
- Seletun 2010:
- EUROPAEM EMF Guidelines 2016:
 Table 3 (RF limits):
 Table 4 (µW/m² and V/m conversions):

8. ICNIRP 6-minute heating limits, 1998:

“These guidelines are based on short-term, immediate health effects such as stimulation of peripheral nerves and muscles, shocks and burns ... and elevated tissue temperatures resulting from absorption of energy during exposure to EMF” and they do not protect against “potential long-term effects of exposure, such as an increased risk of cancer”.

ICNIRP: "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)” Health Phys. (1998) PMID: 19667809; article.

Criticism of ICNIRP’s 6-minute heating limits as not protective for long-term exposure and not protective against established non-thermal adverse effects:

10. Some hand-held Meters and Detectors for measuring mobile phone mast radiation:
• The key reading is peak Volts per metre (V/m) for the E (electric) field.
• Power density (µW/m²) is relevant to heating measurements.
• Conversion Table. This converter shows V/m and µW/m², W/m² and mW/cm².
• Acousticom 2 (lowest reading 0.01 V/m = 0.3 µW/m²) changes from green lights to yellow at 0.05 V/m (6 µW/m²), to amber at 0.3 V/m (240 µW/m²) and to red at 3.0 V/m (24,000 µW/m²).
• Acoustimeter AM-10 (lowest reading 0.02 V/m = 1 µW/m²) changes from green lights to yellow at 0.07 V/m (13 µW/m²) and to red at 0.5 V/m (700 µW/m²).
• Cornet ED78S (lowest reading 0.014 V/m = 0.5 µW/m²) changes from green lights to yellow at -30 dBm = 580 µW/m² [0.21 V/m] and to red at -15 dBm = 180,000 µW/m² [1.2 V/m].
• RadAware Most sensitive setting: (lowest reading 0.015 V/m = 0.6 µW/m²) changes from green lights to yellow at 0.0375 V/m (3.78 µW/m²) and to red at 0.09 V/m (21.6 µW/m²).
• Less sensitive setting: (lowest reading 0.3 V/m = 240 µW/m²) changes from green lights to yellow at 0.75 V/m (1,512 µW/m²) and to red at 1.8 V/m (8,640 µW/m²).
• 3-x Axis RF Meter (lowest reading 0.038 V/m = 3.8 µW/m²; highest reading 11 V/m = 30,000 µW/m²)

11. European Resolutions:
• Council of Europe: Resolution 1815 (Parliamentary Assembly, 2011) Point 8.1.4: “Pay particular attention to ‘electrosensitive’ people who suffer from a syndrome of intolerance to electromagnetic fields and introduce special measures to protect them, including the creation of wave-free areas not covered by the wireless network.”
• European Union: Parliamentary Resolution (2008/2211(INI)) (2009) Point 28: “Calls on Member States to follow the example of Sweden and to recognise persons that suffer from electrohypersensitivity as being disabled so as to grant them adequate protections as well as equal opportunities.”

12. Further Sources:
“Selected Studies on Electrosensitivity (ES) and Electromagnetic Hyper-Sensitivity (EHS)” (ES-UK, 2017).